Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
4th International Conference on Robotics, Intelligent Control and Artificial Intelligence, RICAI 2022 ; : 50-53, 2022.
Article in English | Scopus | ID: covidwho-2327126

ABSTRACT

In recent years, the novel corona virus pandemic is raging around the world, and the safety of home environment and public environment has become the focus of people's attention [2]. Therefore, the research on disinfection robot has become one of the important directions in the field of machinery and artificial intelligence. This paper proposes a robot with the STM32 MCU as the core of disinfection, and is equipped with a variety of sensors and a camera vision, has the original cloud service management platform, the remote deployment of navigation, based on visual SLAM to realize high precision navigation and positioning, can realize to indoor environment autonomously route planning, automatic obstacle avoidance checking, disinfection, epidemic prevention function, at the same time can pass Bit computer software realizes remote control of robot, which has great development potential. © 2022 ACM.

2.
2nd International Conference on Electronic Information Engineering and Computer Technology, EIECT 2022 ; : 171-174, 2022.
Article in English | Scopus | ID: covidwho-2298843

ABSTRACT

With the outbreak and normal development of COVID-19, the effective detection and recording of body temperature has become a new focus of our attention. At present, there is no complete system to measure temperature, automatic record and specific information at home and abroad. To this end, combined with professional knowledge, our team designed a two-dimensional code scanning and human body temperature automatic recording device with STM32F1 as the core. The device STM32F1 development board is the main control chip. By connecting the WIFI module through the serial port, STM32F1 uses the function of wireless communication. Through the communication protocol, the link between the router and the ESC cloud server of Ali Cloud is utilized. The router or mobile data is transmitted to the user side (APP, applets) according to the specified communication protocol. Inside the development board, the code of each part is written to complete the device integrating code scanning and temperature measurement, which can be displayed and alarm through the node (OLED display screen). This will play a good role in preventing the spread of COVID-19. The system can be used in hospitals, communities, railway stations, shopping malls and many other public places. © 2022 IEEE.

3.
5th IEEE International Conference on Information Systems and Computer Aided Education, ICISCAE 2022 ; : 22-25, 2022.
Article in English | Scopus | ID: covidwho-2136296

ABSTRACT

It is especially important for us to detect heart rate due to the relatively high incidence of coronary heart disease in China. Detecting body temperature during Covid-19 is essential. Older heart rate and temperature detectors are commonly used in hospitals due to their high cost of construction. Therefore, it is of great practical importance to design a small heart rate and temperature detection device in this paper. We use STM32 microcontroller and sensors to implement heart rate and body temperature detection so that heart rate and body temperature can be detected in time. © 2022 IEEE.

4.
6th International Conference on Robotics and Automation Sciences, ICRAS 2022 ; : 47-51, 2022.
Article in English | Scopus | ID: covidwho-2018869

ABSTRACT

In the context of the new coronavirus epidemic, medical systems throughout the world has suffered tremendous pressure, the most intuitive problem is a shortage of human resources. In this regard, the 'intelligent drug delivery vehicle' puts forward a feasible scheme, which can replace manual work in a specific hospital area to complete the delivery of drugs. The system is based on STM32F103ZET6 core processor, controlling the OpenMV visual module to identify the hospital corridor information, and then through the pressure detection module, gray detection tracking module and angle sensing module information, the core processor controls the motor drive module to make the vehicle move. The system modifies the algorithm under the traditional NCC template matching algorithm, and uses the zoom image to reduce the pixels which improve the camera frame rate and recognition accuracy. At the same time, the Bluetooth communication module is installed to enable different vehicles to execute the drug delivery operations at the same time, therefore reducing manual work saving. © 2022 IEEE.

5.
Electronics ; 11(10):1568, 2022.
Article in English | ProQuest Central | ID: covidwho-1870855

ABSTRACT

This paper presents a solution for remote classes where hardware is offered as a service. The infrastructure was based on Raspberry Pi mini computers to which a set of different developments boards were connected. The proposed software architecture allows students to connect to remote resources and interact with them. Moreover, the services monitoring status of remote resources were introduced to facilitate software development and the learning process. Furthermore, live video feedback is available to visually monitor operation of the resources. Finally, a debugging server was deployed allowing us to establish a remote debugging session between a user’s PC and the dev board on the server premises. The solution offers a comprehensive remote service including user management. Safety risks of the Internet-exposed infrastructure and safety precautions were discussed. The presented RemoteLab system allows students of WUST to gain knowledge, practise and realize exercises in scope of academic courses such as robot controllers and advanced robot control. Thanks to advances in remote education and utilized tools, the RemoteLab was designed and deployed, allowing stationary classes to be substituted with remote ones, while maintaining a high level of class knowledge transfer. Up to the present, the system has been utilized by over 100 students who could realize exercises and prepare for classes thanks to 24 h system availability.

6.
14th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2022 ; : 197-201, 2022.
Article in English | Scopus | ID: covidwho-1788711

ABSTRACT

Aiming at the problem of long queuing temperature and low efficiency during the period of COVID-19, an intelligent temperature measurement and access control system is designed. It is widely used in enterprises, institutions, scenic spots, commercial areas and other places with large traffic volume. The main control system adopts stm32f407zgt6 embedded chip, hc-sr501 human body infrared sensor is sensitive to human body proximity, and starts the temperature measurement system. Using hc-sr04 ultrasonic sensor to measure people's height and adjust the height of mlx9064esf temperature probe, the system has the characteristics of efficient real-time temperature monitoring, and improves the detection efficiency in places with large flow of people. The experimental results show that the system has good practical application effect. © 2022 IEEE

7.
Front Public Health ; 9: 745524, 2021.
Article in English | MEDLINE | ID: covidwho-1775916

ABSTRACT

This paper presents an OSA patient interactive monitoring system based on the Beidou system. This system allows OSA patients to get timely rescue when they become sleepy outside. Because the Beidou position marker has an interactive function, it can reduce the anxiety of the patient while waiting for the rescue. At the same time, if a friend helps the OSA patients to call the doctor, the friend can also report the patient's condition in time. This system uses the popular IoT framework. At the bottom is the data acquisition layer, which uses wearable sensors to collect vital signs from patients, with a focus on ECG and SpO2 signals. The middle layer is the network layer that transmits the collected physiological signals to the Beidou indicator using the Bluetooth Low Energy (BLE) protocol. The top layer is the application layer, and the application layer uses the mature rescue interactive platform of Beidou. The Beidou system was developed by China itself, the main coverage of the satellite is in Asia, and is equipped with a high-density ground-based augmentation system. Therefore, the Beidou model improves the positioning accuracy and is equipped with a special communication satellite, which increases the short message interaction function. Therefore, patients can report disease progression in time while waiting for a rescue. After our simulation test, the effectiveness of the OSA patient rescue monitoring system based on the Beidou system and the positioning accuracy of OSA patients have been greatly improved. Especially when OSA patients work outdoors, the cell phone base station signal coverage is relatively weak. The satellite signal is well-covered, plus the SMS function of the Beidou indicator. Therefore, the system can be used to provide timely patient progress and provide data support for the medical rescue team to provide a more accurate rescue plan. After a comparative trial, the rescue rate of OSA patients using the detection device of this system was increased by 15 percentage points compared with the rescue rate using only GPS satellite phones.


Subject(s)
Cell Phone , Sleep Apnea, Obstructive , China , Humans , Monitoring, Physiologic , Sleep Apnea, Obstructive/diagnosis
8.
Sensors (Basel) ; 22(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1715639

ABSTRACT

The article describes the implementation of IoT technology in the teaching of microprocessor technology. The method presented in the article combines the reality and virtualization of the microprocessor technology laboratory. A created IoT monitoring device monitors the students' microcontroller pins and sends the data to the server to which the teacher is connected via the control application. The teacher has the opportunity to monitor the development of tasks and student code of the program, where the functionality of these tasks can be verified. Thanks to the IoT remote laboratory implementation, students' tasks during the lesson were improved. As many as 53% (n = 8) of those students who could improve their results achieved an improvement of one or up to two tasks during class. Before the IoT remote laboratory application, up to 30% (n = 6) of students could not solve any task and only 25% (n = 5) solved two tasks (full number of tasks) during the class. Before implementation, 45% (n = 9) solved one problem. After applying the IoT remote laboratory, these numbers increased significantly and up to 50% (n = 10) of students solved the full number of tasks. In contrast, only 10% (n = 2) of students did not solve any task.


Subject(s)
Laboratories , Students , Humans , Monitoring, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL